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Actinide compounds display unusual structural complexity and
variability, concomitant with a wide range of physicochemical
properties that may find applications in fabrication of devices with
optical} magnetic and catalytié properties. Thus far, considerable
efforts have been devoted to the investigation of uranium-bearing
materials} such as uranyl oxide hydrates, phosphates, phosphonates,
silicates, sulfides, sulfates, selenites, tellurites, iodates, fluorides,
and molybdates. Metalorganic coordination polymers built up
from U—O units, however, have not been examined, although
uranium isonicotinated,in which the organic ligands do not bridge
between inorganic units as in typical coordination polymers, were
reported recently. In the present contribution, we describe (ZnO)
(UO,)3(NA)4(OAC), 1 (HNA = nicotinic acid; HOAc= acetic acid),

a novel three-dimensional coordination polymer comprising inor-
ganic U-O—Zn-clustered double sheets and organic ligands.
Clustered metatorganic coordination polymers have been exten-
sively studied in recent years, because the clustered metal ions often
not only exhibit a variety of coordination advantagésit also
introduce intriguing magneficand optoelectronic properties.
Thermal and photoelectrochemical analyses have been performed
for our polymer compound, and the results indicate that it not only
has a high thermal stability but also exhibits interesting photoelec-
tronic properties.

In a typical hydrothermal synthesis, ZnW@Ac),7H,O 2
(0.543 g, 0.5 mmol) was dissolved in water (15 mL). Pyridine-
2,3-dicarboxylic acid (0.167 g, 1 mmol) and triethylamine (0.1 mL)

Figure 1. The structure ofl: (a) the Zn and U coordination environment
represented by thermal ellipsoids drawn to encompass 30% of their electron
density; (b) the three-dimensional framework viewed along the [100]
direction. Green: Zn©or ZnGs units; yellow: UG or UOg units.

were subsequently added to the solution. The final mixture was
sealed in a Teflon-lined autoclave (20 mL) in air and heated at
160°C for 3 days to give yellow crystals df with ca. 59% vyield
based on uranium. It is interesting to note that decarboxylation
occurred and the pyridine-2,3-dicarboxylic acid was transformed
into NA in the process of the hydrothermal reaction. The IR
spectrum shows one strong band at 914 Efor the asymmetric
uranyl stretcHcdconfirming the existence of uranyl groups. Phase
purity of 1 is sustained by its powder X-ray diffraction pattern,
which is consistent with that simulated on the basis of the
single-crystal X-ray diffraction data. In addition, when we substi-
tuted the mixture of Zn(OAg)4H,O and UQ(OAC),:2H,0 for 2
or replaced 2,3-dicarboxylic acid with HNA under the same
synthetic conditions, compouridalso formed, but the product was
polycrystalline and was not suitable for single-crystal structure
analysis.

X-ray single-crystal diffraction analySiseveals that the structure

bonded to two oxygens, forming a uranyl unit. Equatorially, U(1)
and U(2) are separately bonded to five and six oxygens, witOU
bonds ranging from 2.231(4) to 2.628(5) A, of whigs-0(12)
bridges to the adjacent edge-sharing uranyl units to form infinite
straight U-O chains running along tha axis. Moreover, each
acetate simultaneously chelates to one U(1) cation and bridges to
two neighboring U(2) cations, riding on a+® chain. These chains
are corner-linked by Zn(1) cations via the uranyl oxygens (O(7)),
leading to the topology of a robust inorganic-0—Zn double
sheet. These inorganic double sheets are further interconnected via
Zn(1) and O(6) by the metalorganic layers resulting from the
cross-linkage of zinc ions and tridentate NA ligands to construct a
three-dimensional sandwich uranittrinc—organic polymeric
network (Figure 1b).

Thermogravimetric analysis (TGA) under an atmospheric envi-
ronment shows no weight loss between room temperature and 400
°C, which is an indication of stability up to 400C. The high

of 1 possesses a three-dimensional structure with rich coordinations,thermal stability ofl is mainly attributed to the formation of tO—

including eight-coordinate hexagonal bipyramidal U(1) cations,
seven-coordinate pentagonal bipyramidal U(2) cations, six-
coordinate octahedral Zn(1) cations, and five-coordinate trigonal
bipyramidal Zn(2) cations (Figure 1). Each uranium is axially
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Zn double layers that solidifies the flexible organic ligands. After
thermal treatment at 60 for 4 h, the residue df mainly consists

of ZnU;044, and a tiny amount of unknown phase is also present
on the basis of powder X-ray diffraction.

10.1021/ja035388n CCC: $25.00 © 2003 American Chemical Society
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12 /\ 7,463 nm Na,SQ, solution causes g_ene_ration of an anodic photocurrent. Figure
’ 3b shows the change in linear voltammograms as a result of
_ 08 PN TT - shuttering and unshuttering the light source. Under illumination,
3 04 K the photocurrent increases with anodic potential as commonly
2 00 . 2 observed in an n-type semiconductbi he transient photocurrent
2 1.2 Fosdarm é responses ofl were recorded for several ewff cycles of
% 08 _ - illumination. In the inset of Figure 3b, a representative trace shows
04 that an anodic photocurrent of ca. @& at constant 0.4 V applied
o0 voltage versus SCE was generated. The low photocurrent density
200 250 300 350 400 450 500 550 600 650 700 in combination with a low electrical conductivity<@0~> S cnt?)

Wavelength . o .
avelength (nm) for 1 suggests that this coordination polymer compound contains

controlled carrier density, in contrast with conventional oxide
semiconductors such as ZnO in which the carrier density is difficult
to control downt! Compounds with a controlled carrier density
may be favorable for fabrication of devices such as field effect
transistors! The successful synthesis tfand the finding of its
unusual physical properties may also help to explore new types of
semiconducting materials, especially among coordination polymer
compounds containing actinides.

Figure 2. Diffuse reflectance UV-vis spectra (solid line) and solid-state
emission spectra (dotted line) fbtop) and2 (bottom) at room temperature.
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